Items where Subject is "46-xx Functional analysis "

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Item Type
Jump to: A | B | K | M | O | А | Б | М | О | Я
Number of items at this level: 48.

A

Albeverio, Sergio and Ostrovskyi, Vasyl and Samoilenko, Yurii (2007) On functions on graphs and representations of a certain class of $\ast$-algebras. J. Algebra, 308 (2). pp. 567-582.

B

Berezanskii, Yu. M. and Ostrovskii, V. L. and Samoilenko, Yu. S. (1988) Expansion in eigenfunctions of families of commuting operators, and representations of commutation relations. Ukrain. Mat. Zh., 40 (1). pp. 106-109.

Bratteli, Ola and Jorgensen, Palle E. T. and Ostrovskyi, Vasyl (2004) Representation theory and numerical AF-invariants. The representations and centralizers of certain states on $\mathcal O_d$. Mem. Amer. Math. Soc., 168 (797). xviii+178.

K

Kyrychenko, A. A. and Samoilenko, Yu. S. and Tymoshkevych, L. M. (2015) Structure of the systems of orthogonal projections connected with countable Coxeter trees. Ukrainian Math. J., 66 (9). pp. 1324-1332.

M

Moskaleva, Yulia and Ostrovskyi, Vasyl and Yusenko, Kostyantyn (2007) On quadruples of linearly connected projections and transitive systems of subspaces. Methods Funct. Anal. Topology, 13 (1). pp. 43-49.

O

Ostrovskii, V. L. (1986) Construction of quasi-invariant measures on a class of groups that are not locally compact. Ukrain. Mat. Zh., 38 (4). pp. 524-526.

Ostrovskii, V. L. (1986) Irreducible representations of a group of infinite upper triangular matrices. Ukrain. Mat. Zh., 38 (2). 255-259, 272.

Ostrovskii, V. L. (2013) On pairs of operators connected by a quadratic relation. Funktsional. Anal. i Prilozhen., 47 (1). pp. 82-87.

Ostrovskii, V. L. (1989) Representations of a family of quadratic algebras with three generators. In: Application of the methods of functional analysis in mathematical physics (Russian). Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, pp. 94-103.

Ostrovskii, V. L. (1993) Representations of a family of quadratic algebras with three generators. Selecta Math. Soviet., 12 (2). pp. 119-127.

Ostrovskii, V. L. (1984) An analogue of Nelson's theorem for nuclear nilpotent Lie algebras of currents. In: Spectral theory of operators and infinite-dimensional analysis. Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, pp. 120-131.

Ostrovskii, V. L. (1988) A structure theorem for a pair of unbounded selfadjoint operators connected with a quadratic relation. In: Boundary value problems for differential equations (Russian). Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, pp. 89-91.

Ostrovskii, V. L. and Samoilenko, Yu. S. (1988) Application of the projection spectral theorem to noncommuting families of operators. Ukrain. Mat. Zh., 40 (4). pp. 469-481.

Ostrovskii, V. L. and Samoilenko, Yu. S. (1989) Families of unbounded selfadjoint operators that are connected by non-Lie relations. Funktsional. Anal. i Prilozhen., 23 (2). pp. 67-68.

Ostrovskii, V. L. and Samoilenko, Yu. S. (1993) On pairs of unbounded selfadjoint operators associated with an algebraic relation. Ukrain. Mat. Zh., 45 (9). pp. 1253-1258.

Ostrovskii, V. L. and Samoilenko, Yu. S. (1993) Pairs of bounded selfadjoint operators connected by a quadratic relation. In: Mathematics today. ``Vishcha Shkola'', Kiev, pp. 98-114.

Ostrovskii, V. L. and Samoilenko, Yu. S. (1989) Representation of $*$-algebras with two generators and polynomial relations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 172 (Differ). 121-129, 171.

Ostrovskii, V. L. and Samoilenko, Yu. S. (1992) Structure theorems for a pair of unbounded selfadjoint operators satisfying a quadratic relation. In: Representation theory and dynamical systems. Adv. Soviet Math., 9 . Amer. Math. Soc., Providence, RI, pp. 131-149.

Ostrovskii, V. L. and Samoilenko, Yu. S. (1991) Structure theorems for a pair of unbounded selfadjoint operators satisfying quadratic relation. Akad. Nauk Ukrain. SSR Inst. Mat. Preprint (4). pp. 1-25.

Ostrovskii, V. L. and Samoilenko, Yu. S. (1989) Unbounded operators satisfying non-Lie commutation relations. Rep. Math. Phys., 28 (1). pp. 91-104.

Ostrovskii, V. L. and Silvestrov, S. D. (1992) Representations of real forms of the graded analogue of a Lie algebra. Ukrain. Mat. Zh., 44 (11). pp. 1518-1524.

Ostrovskii, V. L. and Turovskaya, L. B. (1995) Representations of $*$-algebras, and multidimensional dynamical systems. Ukrain. Mat. Zh., 47 (4). pp. 488-497.

Ostrovskyi, V. and Rabanovich, S. (2014) Some remarks on Hilbert representations of posets. Methods Funct. Anal. Topology, 20 (2). pp. 149-163.

Ostrovskyi, V. and Samoilenko, Yu. (1999) Introduction to the theory of representations of finitely presented $*$-algebras. I. Representations by bounded operators. Reviews in Mathematics and Mathematical Physics, 11 (1). Harwood Academic Publishers, Amsterdam, iv+261. ISBN 90-5823-042-2

Ostrovskyi, V. L. (2004) Representations of an algebra associated with the Dynkin graph $\tilde E_7$. Ukrain. Mat. Zh., 56 (9). pp. 1193-1202.

Ostrovskyi, V. L. and Proskurin, D. P. and Yakymiv, R. Y. (2012) Representations of relations with orthogonality condition and their deformations. Methods Funct. Anal. Topology, 18 (4). pp. 373-386.

Ostrovskyi, V. L. and Samoilenko, Yu. S. (1993) On pairs of selfadjoint operators. Sem. Sophus Lie, 3 (2). pp. 185-218.

Ostrovskyi, V. L. and Samoilenko, Yu. S. (1996) On representations of $*$-algebras in mathematical physics. J. Nonlinear Math. Phys., 3 (1-2). pp. 160-163.

Ostrovskyi, V. L. and Samoilenko, Yu. S. (1995) On representations of the Heisenberg relations for the quantum $E(2)$ group. Ukrain. Mat. Zh., 47 (5). pp. 689-692.

Ostrovskyi, V. L. and Samoilenko, Yu. S. (2006) On spectral theorems for families of linearly connected selfadjoint operators with prescribed spectra associated with extended Dynkin graphs. Ukrain. Mat. Zh., 58 (11). pp. 1556-1570.

Ostrovskyi, V. L. and Samoilenko, Yu. S. (1995) Representations of $*$-algebras and dynamical systems. J. Nonlinear Math. Phys., 2 (2). pp. 133-150.

Ostrovskyi, V. L. and Samoilenko, Yu. S. (1995) Representations of quadratic $*$-algebras by bounded and unbounded operators. Rep. Math. Phys., 35 (2-3). pp. 283-301.

Ostrovskyi, V. L. and Samoilenko, Yu. S. (1995) Representations of quadratic $\ast$-algebras with two generators. In: Spectral and evolutional problems. Simferopol. Gos. Univ., Simferopol, pp. 15-28.

Ostrovskyi, Vasyl (2004) Centered one-parameter semigroups. Methods Funct. Anal. Topology, 10 (2). pp. 32-42.

Ostrovskyi, Vasyl (2005) On $\ast$-representations of a certain class of algebras related to a graph. Methods Funct. Anal. Topology, 11 (3). pp. 250-256.

Ostrovskyi, Vasyl (2000) On double commutator relation. Methods Funct. Anal. Topology, 6 (2). pp. 60-65.

Ostrovskyi, Vasyl (1996) On operator relations, centered operators, and nonbijective dynamical systems. Methods Funct. Anal. Topology, 2 (3-4). pp. 114-121.

Ostrovskyi, Vasyl and Popovych, Stanislav and Turowska, Lyudmila (2007) On $C^*$-algebra of a semigroup of partial isometries. J. Funct. Anal., 251 (1). pp. 210-231.

Ostrovskyi, Vasyl and Proskurin, Daniil (2000) Operator relations, dynamical systems, and representations of a class of Wick algebras. In: Operator theory and related topics, Vol. II (Odessa, 1997). Oper. Theory Adv. Appl., 118 . Birkhäuser, Basel, pp. 335-345.

Ostrovskyi, Vasyl and Proskurin, Daniil and Savchuk, Yurii and Turowska, Lyudmila (2012) On the structure of homogenenous Wick ideals in Wick $*$-algebras with braided coefficients. Rev. Math. Phys., 24 (4). p. 1250007.

Ostrovskyi, Vasyl and Proskurin, Daniil and Turowska, Lyudmila (2008) Unbounded representations of $q$-deformation of Cuntz algebra. Lett. Math. Phys., 85 (2-3). pp. 147-162.

Ostrovskyi, Vasyl and Schmüdgen, Konrad (2014) A resolvent approach to the real quantum plane. Integral Equations Operator Theory, 79 (4). pp. 451-476.

А

Ашурова, Е. Н. and Островський, В. Л. (2015) Про зображення ``all but two'' алгебр. In: Спектральна теорія операторів та наборів операторів. Інститут математики НАН України, Київ, pp. 8-21.

Б

Бакан, А.Г. (2009) Поліноміальна апроксимація на дійсній осі, проблема Карліна та нормальність опуклих множин. 01.01.01 -- математичний аналіз. Автореферат на здобуття наукового ступеня доктора фізико-математичних наук. Doct. дис., Інститут математики НАН України.

М

Муратов, М. А. and Островский, В. Л. and Самойленко, Ю. С. (2011) Конечномерный линейный анализ I. Линейные операторы в конечномерных векторных пространствах (L): Учебное пособие. Центр учебной литературы, Киев.

Муратов, М. А. and Островский, В. Л. and Самойленко, Ю. С. (2012) Конечномерный линейный анализ. I. Линейные операторы в конечномерных гильбертовых (унитарных) пространствах (H): Учебное пособие. Центр учебной литературы, Киев.

О

Островський, В. Л. (2004) Зображення операторних співвідношень. Doct. дис., Інститут математики НАН України.

Я

Якименко, Д.Ю. (2011) Унітаризація зображень примітивних частково впорядкованих множин ручного типу. PhD дис., Інститут математики НАН України.

This list was generated on Tue Jun 27 04:10:08 2017 EEST.