Items where Subject is "16-xx Associative rings and algebras "

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Item Type
Jump to: A | M | O | А
Number of items at this level: 10.

A

Albeverio, Sergio and Ostrovskyi, Vasyl and Samoilenko, Yurii (2007) On functions on graphs and representations of a certain class of $\ast$-algebras. J. Algebra, 308 (2). pp. 567-582.

M

Moskaleva, Yulia and Ostrovskyi, Vasyl and Yusenko, Kostyantyn (2007) On quadruples of linearly connected projections and transitive systems of subspaces. Methods Funct. Anal. Topology, 13 (1). pp. 43-49.

O

Ostrovskii, V. L. and Samoilenko, Yu. S. (1989) Representation of $*$-algebras with two generators and polynomial relations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 172 (Differ). 121-129, 171.

Ostrovskyi, V. and Rabanovich, S. (2014) Some remarks on Hilbert representations of posets. Methods Funct. Anal. Topology, 20 (2). pp. 149-163.

Ostrovskyi, V. and Samoilenko, Yu. (1999) Introduction to the theory of representations of finitely presented $*$-algebras. I. Representations by bounded operators. Reviews in Mathematics and Mathematical Physics, 11 (1). Harwood Academic Publishers, Amsterdam, iv+261. ISBN 90-5823-042-2

Ostrovskyi, V. L. (2004) Representations of an algebra associated with the Dynkin graph $\tilde E_7$. Ukrain. Mat. Zh., 56 (9). pp. 1193-1202.

Ostrovskyi, V. L. and Samoilenko, Yu. S. (1995) On representations of the Heisenberg relations for the quantum $E(2)$ group. Ukrain. Mat. Zh., 47 (5). pp. 689-692.

Ostrovskyi, Vasyl (2005) On $\ast$-representations of a certain class of algebras related to a graph. Methods Funct. Anal. Topology, 11 (3). pp. 250-256.

Ostrovskyi, Vasyl and Proskurin, Daniil and Savchuk, Yurii and Turowska, Lyudmila (2012) On the structure of homogenenous Wick ideals in Wick $*$-algebras with braided coefficients. Rev. Math. Phys., 24 (4). p. 1250007.

А

Ашурова, Е. Н. and Островський, В. Л. (2015) Про зображення ``all but two'' алгебр. In: Спектральна теорія операторів та наборів операторів. Інститут математики НАН України, Київ, pp. 8-21.

This list was generated on Tue Aug 22 12:14:06 2017 EEST.